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Abstract-A finite-difference solution using a combination of line iterative method and boundary vorticity 
method is presented for the hydrodynamically and thermally fully developed laminar forced convection in 
curved pipes subjected to the thermal boundary conditions of axially uniform wall heat flux and peri- 
pherally uniform wall temperature at any axial position. The numerical solution converges up to a reason- 
ably high Dean number where the asymptotic behavior for the flow and heat transfer results already 
appears. The Prandtl number effect on heat transfer result is clarified for the first time, and it is shown 
that all the heat transfer results for Pr > 1.0 can be correlated by a single curve using a new parameter 
(PPr) with reasonable accuracy. The numerical results from the present analysis are compared with the 
experimental and theoretical results available in the literature. The perturbation method is clearly shown to 

be invalid, and certain deficiency of the boundary-layer approximation method is pointed out. 

NOMENCLATURE 

radius of pipe; 
constant, -C,a3/4vp; 
axial pressure gradient, ~P,/RaiXl ; 

friction factor 2TW/(pWZ) or a 
dummy variable ; 
average heat transfer coefficient ; 
Dean number, Re(a/R,)+, see equa- 
tion (19) ; 
modified Dean number, 2*K, see 
equation (19); 
thermal conductivity ; 
number of divisions in R-direction ; 
number of divisions in &-direction ; 
Nusselt number, 7;(2a)/k; 
pressure ; 
axial pressure distribution 
measured along the centerline and 
a function of RJ2 only ; 
pressure deviation which is a 
function of R and 4 only; 
Prandtl number, v/a; 
a new parameter, (K*Pr)*; 

R, $J, RCA?!, cylindrical coordinates; 

RO radius of curvature of a curved 

pipe ; 
Re, Reynolds number, (2a)W/v; 

I, dimensionless radial coordinate, 

Rla ; 

ro dimensionless radius of curvature 
of a curved pipe, RJa; 

T, local temperature; 
T 
v:‘V, W, 

wall temperature; 
velocity components in R, 4 and 
R$J directions; 

u, v, w, dimensionless velocity com- 
ponents in r, tf~ and r&2 directions. 

Greek letters 

&UT 
thermal diffusivity ; 
quantities defined in equation (13) ; 

6 a prescribed error, see equation 
(17); 

8, dimensionless temperature differ- 
ence ; 

PL, viscosity; 
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Subscripts 
b, 
i, .i, 

0, 
W, 
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kinematic viscosity ; 
vorticity function defined by equa- 
tion (9) ; 
density ; 
axial temperature gradient, 
aT/R,aQ; 
mean shear stress at wall ; 
dimensionless stream function de- 
fined by equation (7); 
relaxation factor ; 
dimensionless Laplacian operator. 

value at boundary; 
space subscripts of grid point in 
R and 4 directions ; 
value for straight pipe; 
value at wall 

Superscripts 

n, nth iteration; 
_ 

average value. 

1. INTRODUCTION 

CURVED pipes or pipe bends are used extensively 
in industrial equipment such as helical coil or 
spiral heat exchangers, trombone coolers, reac- 
tors and various heat engines. The flow in curved 
pipes is characterized by Dean number with the 
double helix secondary flow acting in a cross- 
section normal to the main flow caused by 
centrifugal forces. Similar secondary flow pat- 
terns can also be caused by buoyancy forces in 
gravitational or rotating field, Coriolis forces 
and other body forces. 

The literature on fully developed laminar flow 
in curved pipe is very extensive; but it appears 
that theoretical solution for hydrodynamic 
entrance flow in a curved pipe is not available. 
Similarly, the laminar forced convection heat 
transfer in curved pipes has been studied so far 
mainly for hydrodynamically and thermally 
fully developed regime only. Notably, one finds 
that the Graetz problem for curved pipes has 

not been solved yet. Under certain conditions, 
the effects due to buoyancy, Coriolis forces and 
angle of inclination must be considered simul- 
taneously with the centrifugal force effect for the 
forced convection heat transfer in curved pipes. 
In contrast to the rather extensive data avail- 
able for flow and heat transfer in straight pipes, 
it is evident that in many respects the corres- 
ponding design data for curved pipes are still 
lacking. 

Focussing one’s attention to the methods of 
analytical solution for fully developed laminar 
forced convection in curved pipes, it is found 
that the perturbation method [l, 21 is applicable 
only for very low Dean number flow regime. On 
the other hand, the approximate method [3-51 
based on boundary layer concept near the pipe 
wall is valid only for high Dean number flow 
regime. For the intermediate Dean number flow 
regime, neither the perturbation method nor the 
boundary layer technique is effective. 

The purpose of this paper is to present an 
accurate numerical solution using boundary 
vorticity method [6, 71 for a steady fully de- 
veloped laminar forced convection in uni- 
formly heated curved pipes valid up to a 
reasonably high value of the Dean number. This 
work was carried out as a first step toward the 
numerical solution of Graetz problem for 
curved pipes. In addition to presenting accurate 
flow and heat transfer results, the Prandtl 
number effect on laminar forced convection 
heat transfer in curved pipes is clarified for the 
first time. The numerical results for flow and 
heat transfer from this study will be compared 
with the data available in the literature, and the 
discrepancy will be clearly pointed out. 

2. FORMULATION OF THE PROBLEM 

Consideration is given to a steady hydro- 
dynamically and thermally fully developed 
laminar flow of viscous incompressible fluid in 
a curved pipe under the thermal boundary 
conditions of axially uniform wall heat flux 
and peripherally uniform wall temperature at 
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any axial position. In order to facilitate the av vav uI/ lap’ a 
analysis, the following assumptions are made : 

~-++_++---_ ___++- 
aR R a+ R pR a4 aR 

The radius of curvature of the pipe axis is 
large in comparison to the radius of the pipe. (3) 

Physical properties are constant and buoy- 
ancy effect is neglected. aw vaw i ap, 
Viscous dissipation is negligible and heat UaR+-p=--p R a4 PR, aa 

sources do not exist. 

Taking the origin of the cylindrical co- 
ordinates (R, 4, R$) at the center of the circular where the pressure at any point consists of two 
cross-section as shown in Fig. 1 and applying 

2 

0 I 
M+I 

FIG. 1. Coordinate system and numerical grid. 

the assumptions stated above, the governing parts and is expressed as, 
equations for the present problem can be shown 
to bc [l]: P = P,(R,Q) + P’(R, 4). 

Continuity equation Energy equation 

;(RU) + $ = 0. 
aT vaT WaT 

(1) UaR+R~+R,~ 

Momentum equations in R, 4 and R&2 directions 
=a 

,au+!!au_!!!= _laP’_L? ( 
(5) 

aR R aqb R P aR Ra4 The boundary conditions are: 

( 
-+--'fJJ 
av v 

’ aR R R acj (4 U=V=W=T-T,=O at pipe wall. (6) 
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Energy equation The simplified Navier-Stokes equations (2H4) 
and the energy equation (5) are quasi-linear, 
second-order partial differential equations of 
elliptic type. Introducing the following trans- 
formations, 

P?++~+‘u+ W. (11) 

It is noted that the vorticity function [ is intro- 
duced here to avoid using biharmonic function 
V”$ in the momentum equation for secondary 
flow. Because of symmetry it is only required to 
consider, for example, the upper half of the 
circular region (see Fig. 1). The boundary 
conditions are now restated as follows: 

R = [a]r, R, = [a-jr,, u = [v/a-j& 

I/ = [v/u]u, w = [Cv/a]w, 
T, - T = [CzPr a]@ ap,fR,aS2 

-Cla3/4vp = C, aT/R,aQ = z 

and a dimensionless stream function $ 

I a+ a* 

n=;,, v=-aY 

= Cl, 

(7) 

the momentum and energy equations can be 
restated in the following dimensionless forms 
after eliminating pressure terms between equa- 
tions (2) and (3). 

Momentum equation for secondary flow 

=V25-2 z w fcos$~+sin+~ 
O( 

(8) 
‘ 84 > 

where 

Vorticity equation 

i = v2*. (9) 

Axial momentum equation 

$=g=w=tl=O atpipewall(r=l) 

(12) 
aw ae 

$‘[‘~Z~ZO 
along horizontal center 

line (4 = 0 and rr). 

In contrast to the forced convection with 
secondary flow caused by buoyancy forces, a set 
of momentum equations (8)-(10) is seen to be 
uncoupled with the energy equation (11) and the 
flow problem can be solved independently. Since 
a perturbation method [l, 21 is known to diverge 
quickly with the increase of Dean number, a 
numerical solution appears to be the only 
practical approach for the accurate solution of 
the present problem By substituting the vorticity 
function into the momentum equation (8) for 
secondary flow, the vorticity function can be 
eliminated, but the numerical solution of the 
resulting set of equations in cylindrical co- 
ordinates by the conventional method [8] is 
known to converge extremely slowly and is not 
practical from the viewpoint of computing time. 
Because of recent development of the boundary 
vorticity method [6], the above difficulty can be 
overcome readily. 

3. FINITE DIFFERENCE APPROXIMATIONS AND 
BOUNDARY VORTICITY METHOD 

By using a three-point central-difference 
approximation and a dummy variable f for the 
dependent variables w, i, II/ and 8, a general 
finite-difference equation can be written for 

(IO) equations (8)-(11) as follows : 
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where, 

B= I 
Ar 
-%,j 2 

0 , Y= 

;Prui,j 

(W 
g&p.’ for h,j = ii,j and wi,j 

0 for f,, j = tii,j 

r2 

$$ PYVij for A,j = Bi,j 
1 

1 C2 IO [ - Wi,j 
rc 

$(Wi_l,j - wi+,,j)COS$j + (Wi,j-1 - Wi,j+l)Sin4j 

I 1 
for .fi,j = Ci,j 

fJ= - W2 C,j for fi,j = +i,j 

- (Ar)’ 4 for J,j = wi,j 

- (Ar)’ wi, j for fi,j = Oi,j 

In order to circumvent the singularity at the origin of the cylindrical coordinates, finite difference 
equation in Cartesian coordinates is employed at the origin instead of the usual approximate or 
extrapolation method. 

For the purpose of illustrating the computational procedure using boundary vorticity method, a 
set of finite-difference equations for secondary flow obtained by applying equation (13) to the grid 
points along the radial line j = 1 will be written in a matrix form as follows: 

1 32 c2 

A3 B3 C3 0 

A, B, Ct 

. . . 

. . . 

0 AM-, BM-I CM-, 

AM BM 

. (14) 

Here the symbols AiT Bi and Ci represent the coefficient for the dependent variables ci _ l,b ci,r and 

li+ I.1 respectively, in equation (13) at the grid point (i, I) and the symbol Gi, 1 represents all the terms 
on the right hand side of the same equation for fi,[ = ri,I. Similarly, by considering the radial line 
j = 1, a set of linear algebraic equations for the stream function pi, I can be written in a matrix form as 

E 
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E2 F2 

D3 E3 F3 0 

D4 E4 F, F4 
. . . 

. . . 

0 DA, EM Fhf 

CD M+I + FY+I) EY+~ 
c 

where D, Ei and Fi stand for the coefficient of 
the stream functions ~i-l,r, Ic/i,l and $i+l,l 
respectively, in equation (13) at the grid point 
($ r), and Hi,] denotes all the terms on the right 
hand side of the same equation when & = 

tii, I. 

It is noted that equations (14) and (15) are 
obtained after applying the boundary conditions 

ii,1 = ii,N+l = il,j = 0 for equation (8), and 
the boundary conditions $i, 1 = $ig+ 1 = 

$l,j=O and a$M+,,jlar=o (or tiM,j= Ic/M+z,j) 
for equation (9). The success of the boundary 
vorticity method is based on the observation that 
a linear relationship exists between the vorticity 
function CM+ 1,1 and the stream function It/M + 1, l 
at the boundary [6,7]. For example, given three 
sets of values at a boundary point for the 
vorticity function and the stream function, 
namely, CL’) and @ii’, t;b” and $b’), and t;i”’ and 
$b”), the following linear relationship exists. 

- +h2’, + fib”‘. (16) 

At the beginning one assumes that 5, + i, l = 
(b’) in equations (14) and (15). Then equation (14) 
can be solved simultaneously for ii,r, 
i = 2,3, . . . M, by using the Gaussian elimina- 

tion method. Using the obtained vorticity 
functions, the right hand column of the matrix 
equation (15) can be evaluated. Applying the 
Gaussian elimination method to equation (15) 
the values for the stream function t+ki,l can be 
found and the boundary value tiM+ i, I = I+$,” 
will be stored. By assuming again [,+ 1,1 = 
ci2) and following exactly the same procedure, 

. 

$ M, 1 

$ A4+1,1 

H hf. 1 
H M+l 

(15) 

the second boundary value +M+ i, I = $b” will 
also be stored. Using the linear relation (16) 
and noting that $a) = 0, L$“’ can be obtained. 
Substituting the newly obtained boundary vor- 
ticity I;b”) into equations (14) and (15) and solving 
these equations, one obtains ci,[ and $+ 
i = 2, 3, . . . A4, which represent the numerical 
solutions along the radial line j = 1. The same 
computational procedure will be repeated for 
the succeeding radial lines j = 1 + 1, 1 + 2, . . . 
etc. with j = 2 at the beginning. Numerical 
experiments show that using ib3) the values of 
the stream function on the boundary, tiy+ 1, 1, 
range from 10e7 to 0 as compared with the 
largest value at interior point. Theoretically, of 
course, the stream function must vanish at the 
boundary. It is noted that an error of the above 
magnitude may be caused by a round-off error 
using a single precision. 

With a computational procedure for the 
numerical determination of the boundary vor- 
ticity established it suffices to mention that the 
usual line iterative relaxation method [6, 73 for 
the numerical solution of a set of finite-difference 
equations with the associated boundary con- 
ditions may be employed 

In the numerical computation, the prescribed 
error for all the dependent variables and the 

secondary velocity components is 
M+l 
Nfl 

& = c fyy l) 

i,j 
M+l 

(17) 
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Since the momentum equations (8) and (10) 
are coupled, the number of inner iterations in- 
volving the boundary vorticity method is of 
some interest. The following result is found to be 
satisfactory from the viewpoint of computing 
time after some numerical experiments : 

Number of inner iterations 
relating to boundary (f W/U R& 

vorticity method 

20 - 50 1.0 - 1.1 
20- 5 1.1 - 1.35 

1 1.35 or higher. 

The parameter f Re will be defined later. The 
number of inner iterations for Wi,j is always one. 
It is noted that further increase of the number 
of inner iterations may destabilize the con- 
vergence of the iteration process. 

In order to accelerate the convergence, an 
overrelaxation factor is used. Since nonlinear 
terms are involved in the elliptic type partial 
differential equations for the present problem, 
no general method is available for the evaluation 
of an optimum relaxation factor. However, with 
a mesh size of M, N = 28, a relaxation factor 
ranging from 1.7 for small Dean number to 1.0 
for large Dean number is found to be satis- 
factory for all the equations except the 
momentum equation (8) for secondary flow 
where a factor of 1.0 is used always in the 
numerical computation. In order to stabilize the 
convergence in the high Dean number region, 
underrelaxation factors of 0.7, 0.5, 0.1 and 0.02 
are also tried. However, no appreciable differ- 
ence is observed in extending the parametric 
value as compared with the relaxation factor of 
l-0, confirming that the boundary vorticity 
method is computationally very stable. 

The convergence of the iteration process 
depends on whether or not the coefficient matrix 
is diagonally dominant. Consider, for example, 
an off-diagonal element 

Ar Ar 
Ai = 1 -2r. + 1Ui,, 

I 

in equation (14). To ensure diagonal domin- 
ance, one expects a restriction on the magnitude 
of the secondary flow velocity component to be 
1 Ui, II < (2/Ar - l/ri). If the limit is exceeded, the 
coefficient may no longer be diagonally domin- 
ant, and the numerical solution starts oscillation 
and finally diverges. This difficulty can be over- 
come by using liner mesh sizes, but the com- 
puting time and the round-off errors increase 
correspondingly. In order to extend the numeri- 
cal solution into high parameter region, the 
mesh sizes of M, N = 56 and M = 74, N = 42 
are also tried in some cases in addition to the 
mesh size of M, N = 28 for most computations. 

At this point a comparison between the 
boundary vorticity method and the conventional 
methods of determining the boundary vorticity 
is of practical interest. One may determine the 

\ 0 E-V method 

\ l S-V method 
\ 
\ 

, Solution diverges 
from this point an _ 

K=0.32 

ol 
Relaxation factor, w 

0 

FIG. 2. Comparison of numerical solution between boundary 

vorticity method and stream function-vorticity method. 



1666 MITSUNOBU AKIYAMA and K. C. CHENG 

boundary vorticity by unsteady state method 
[9] or writing the central finite difference equa- 
tion for equation (9) at the boundary leading to 
the following expression: 

i M+ 1.j = 2tiM,jl(Ar)2. 

The approximation of the boundary vorticity 
is known to have a significant effect on the 
stability of numerical solution. Using the above 
expression for boundary vorticity, a set of the 
governing equations can be solved by the con- 
ventional line iterative method. This method of 
solution will be referred to as stream function- 
vorticity method in this paper. Figure 2 
illustrates the results of numerical experiments 
for the boundary vorticity method and the 
stream function-vorticjty method at the values 
of Dean number K = 0.32, 54 and 90, respec- 
tively. For this comparison, the number of 
inner iterations is fixed. At K = 0.32 and 54, the 
stream function-vorticity method fails to yield 
convergent solution with the restriction of 
equation (17) for relaxation factor w >, 1. In 

T 

i 

particular, the stream function-vorticity method 
fails to yield convergent solution for K = 90 
even with an underrelaxation factor as small as 
w = 0.05. In contrast, the boundary vorticity 
method converges quickly with w = 0.8 h 1.0. 
In high Dean number range, the boundary 
vorticity method has definite advantage. 

4. FLOW AND HEAT TRANSFER RESULTS 

It is possible to obtain the expressions for the 
product of friction factor and Reynolds number 
if Re) and Nusselt number (Nu) by considering 
either the velocity and temperature gradients, 
respectively, along the pipe wall, or the overall 
force and energy balances, respectively, for the 
axial length R,dS2. The results are 

(fRe), = 4(%/&l,@ 

(Nu), = 2w(%/arl,/(weI (18) 

(f R& = 8/W 

(Nu),, = wZ/lGOl. 

FIG. 3. Comparison of velocity profile along 4 = 0 and x 
and isolines for velocity at K = 196 from this work with 
Adler’s experimental data at K = 205 and streamlines at 

K = 196 from this work. 
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Evaluation of the mean values indicated above 
are carried out by using Simpson’s rule. The 
above two expressions for the overall character- 
istics, f Re and Ny afford checking the con- 
gence of the numerical results. It is of interest to 
note that the Dean number K and the modified 
Dean number Kd can be written as 

(19) 

Kj = 2K2 = ReRe, =(p$$$2)($~~2). 

The parameter Re, represents the ratio of the 
centrifugal force effect to the viscous force effect 
and might be referred to as centrifugal Reynolds 
number. 

equation (17). The streamlines are also illustrated 
in Fig 3, and one sees that at K = 196 the 
center of circulation is situated near the inner 
wall. The loci of the centers of circulation are of 
interest. As Dean number increases, the centers 
of circulation move toward the wall radially, but 
horizontally they move away first from the 
central vertical axis toward the outer wall. With 
further increase of Dean number they then move 
back toward the inner wall. The distribution of 
the secondary flow velocity is unsymmetric with 
respect to the central vertical axis. Furthermore, 
the distribution of the streamlines suggests that 
at K = 196, the boundary layer approximation 
cannot be applied. 

The effect of Dean number on average fric- 
tion factor is well understood The effect of Dean 

(fRe)+/(fRe)o 

FIG. 4. Local angular distribution of (fRe),/(fRe), with 
Dean number K as a parameter. 

In order to assess the accuracy of the number on the local distribution of friction 
numerical solution, the axial velocity profile factor is of theoretical interest but appears to 
along the central horizontal axis and isolines for have not been reported in the literature. Figure 4 
velocity from this analysis at K = 196 are com- 
pared against Adler’s experimental data [3] at 

shows the local angular distribution of (f Re),J 
(f Re), as K varies from 0 to 186.8. At K = 13.8 

K = 205 in Fig. 3. A good agreement is ob- the value of (fRe),/(f Re), is seen to be larger 
served between the present numerical solution than one along the outer wall (-n/2 -C 4 -C 7r/2) 
and the experimental data The numerical and less than one along the inner wall such that 
solution can be extended to K = 205 with the average value is slightly larger than one. 
relaxation of the prescribed error but the 
numerical results at K = 196 are based on 

At K = 947, the region with (fRe)+ > f Re), 
occupies nearly three-quarters of the whole 
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region including the outer wall. With further 
increase of Dean number, the value of (J’Re)gi 
(fRe), is always seen to be less than one in the 
neighbourhood of C#J = A. 

r 
,O 

-5 

I / 
+=o 

0 56 
/II/ I I I IllIll I 

2 8 IO 
K 

FIG. 5. (fRe)o/(fRe)O vs. K at outer surface (4 = 0) and 
inner surface (4 = x) with comparison made against 

f W(f R4,. 

In order to bring out the effect of Dean 
number on local friction factor more clearly, 
the value of (fRe)+,/(fRe), is plotted against K in 
Fig. 5 for 4 = 0 and C/J = X, together with the 
average value (fRe)/(fRe), indicated for com- 
parison. In very low Dean number region, say 
up to K = 10, the centrifugal force effect on the 
average value of fRe is negligible, but one can 
clearly see the difference between the local value 
at C$ = 0 (or $J = n) and the average value. 
Within the range of present investigation one 
notes that both the local value of (f’Re&, at 
4 = 0 and the average value increase con- 
tinuously with K, but the local value of (fRe)+/ 
(fRe)o at 4 = TZ remains at around 0.84 after 
reaching say K = 40. 

Fully developed laminar flow in curved pipes 
has been studied very extensively in the past 
because of its technical importance. Figure 6 
shows the comparison between the result of 
present numerical analysis and the experimental 
and theoretical data available in the literature 

Preseni work 

Empirical equotion 
Theoretlcol equation 

ItocIll 

Baruo t41 
Mori and Nokayoma C51 

Adler C 31 

Experiment01 doto 

FIG. 6. Comparison of friction factor results from this work 
with theoretical and experimental results available in 

literature. 
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for ~~e/(~~e)~ vs. Dean number K. It is seen expected that the secondary flow due to centri- 
clearly that the present result agrees with the fugal force is rather weak. An examination of the 
experimental data of White [lo] and Ito [l l] energy equation (11) reveals that the role of 
from relatively smah to high Dean number Prandtl number in convective terms is similar 
region, while the predictions based on boundary to that of Dean number, and this observation is 
layer approximation [3-S] lead to completely confirmed by the temperature profiles shown in 
wrong trend in the low Dean number region. Fig. 7. The temperature profile along the central 
Ito’s prediction is generally good for the range vertical axis exhibits saddle shape in the central 
of Dean numbers under consideration, but has region, indicating a rather dominant convective 
some error in the low parameter range. The motion therein. One should point out that the 
above comparison serves to illustrate the relative characteristics noted above for the temperature 
merits of the various theoretical methods. For field are further magnified with the increase of 
the high Dean number region, Ito’s prediction the parameters X and Pr within the range of the 
deserves to be used in design. present investigation. Unfortunately the present 

-8 

0.06 - 

FIG. 7. Temperature profiles and isothermals at K = 766 for 
Pr = 100. 

Typical temperature profiles along the central numerical solution cannot reach the value of 
horizontal and vertical axes and isothermals K = 632 to enable one to make direct compari- 
from the present analysis for Pr = 100 and son with the experimental temperature profiles 
K = 766 are shown in Fig 7. At K = 766 it is for air reported by Mori and Nakayama [5]. 
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FIG. 8. Local angular distribution of (Nu),J(Nu), with Dean 
number K as a parameter for Pr = @7 and 100. 

However, one notes a significant difference for 
temperature profile along central horizontal 
axis in the neighborhood of inner wall (4 = rc), 
with the present numerical result and the ex- 
perimental data lying on opposite sides of the 
temperature profile for a straight pipe. 

In order to consider the above discrepancy 
further, the angular distribution of the local 
Nusselt number along the pipe wall with Dean 
number as a parameter is shown in Fig 8 for 
Pr = Cl.7 and 100. The variations of the local 
Nusselt numbers at 4 = 0 (outer wall) and 
4 = n (inner wall) with Dean number K, are 
shown in Fig. 9 for Pr = 07, with the average 
Nusselt number included for comparison. As 
expected, the situation is similar to that shown 
in Fig 5 for friction factor. 

The overall heat transfer results in terms of the 
Nusselt number ratio Nu/(Nu), vs. Dean num- 
ber K from this analysis are shown in Fig. 10 
for various Prandtl numbers with comparison 
made against tjzisik and Topakoglu’s results [2] 
using perturbation method Mori and Naka- 
yama’s theoretical results using boundary layer 

FIG. 9. (Nu)+/(AJu),, vs. K at outer surface (4 = 0) and inner 
surface (4 = x) with comparison made against Nu/(Nu), 

for Pr = 07. 
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approximation and their experimental data [S], 
and also Seban and McLaughlin’s experi- 
mental data [12]. It is noted that the data 
obtained by Seban and McLaughlin [12] are 
reproduced here by using the same trans- 
formation as that used by &isik and Topa- 
koglu [2]. It can be seen that the average Nusselt 
number from this analysis is closer to the 
experimental data at outer surface than those 
at inner surface given by Seban and McLaughlin 
[12]. For Pr = 07 (air) the result from the 

layer approximation is valid near Pr = 1.0 only, 
and the result for Pr = co shown in [5] is 
believed to be invalid. The existence of asymp- 
totic value for Pr + GO is doubtful: but the 
asymptotic value does indeed exist for Pr + 0, 
as shown in Fig. 10. 

The effect of Prandtl number on forced con- 
vective heat transfer in curved pipes is of con- 
siderable theoretical and practical interest. A 
careful study of the heat transfer results for 
Pr > 1 shown in Fig. 10 reveals that after 

Mori and Nokoyomo 

FIG. 10. Comparison of heat transfer results from this 
work with theoretical and experimental results available in 

literature. 

present analysis agrees with Mori and Naka- 
yama’s data [S] for air. As can be clearly seen, 
ozisik and Topakoglu’s results from perturba- 
tion method diverge quickly with the increase of 
Dean number. It is now evident that the pertur- 
bation method cannot be applied to the forced 
convective heat transfer with secondary flow 
except in a very low parameter region which is 
practically not important. Based on the results 
from this analysis, it appears that Mori and 
Nakayama’s theoretical result from boundary 

reaching a certain Dean number or Nu/(Nu), x 
1.35, all the curves become straight lines and 
more or less parallel to each other. For a given 
value of Nu/(Nu),, the Prandtl number effect 
can also be seen from the decrease of K with the 
corresponding increase of Pr. The above ob- 
servation for Prandtl number effect on heat 
transfer result also confirms the role of Prandtl 
number in the convective terms of the energy 
equation (11) noted earlier. A study of the basic 
equations shows that when the Prandtl number 
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is large, the inertia terms in the momentum energy equation. Alternatively, by normalizing 
equations (8) and (10) can be neglected. This the dimensional momentum equation for secon- 
fact is also verified by the numerical results. In dary flow corresponding to equation (8) and the 
other words, while the secondary flow is rather energy equation (5) the parameter K’Pr can also 
weak, the convective terms in the energy equa- be shown to arise. 
tion (11) are important because of large Prandtl It is now possible to obtain a new correlation 
number. With large Prandtl number it can be of heat transfer results for high Prandtl number 
shown that a new parameter K2Pr results. fluids as shown in Fig. 11 where all the results 
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FIG. 11. Comparison of a new correlation curve for heat 
transfer results for Pr 3 1.0 from this work using a new 
parameter with theoretical and experimental results 

available in literature. 

For example, by introducing the secondary presented in Fig. 10 are replotted on the basis 
flow characteristic velocity U, characteristic of Nu/(Nu), vs. (K’Pr)+ for illustration. Since 
axial velocity W and other suitable characteris- Seban and McLaughlin’s experimental data [ 121 
tic quantities for T - T,. P' and 52, the radial are for fluids with Prandtl number ranging from 
momentum equation (2) and the energy equa- 100 to 657, the arithmetic mean value of 379 
tion (5) may be normalized. Noting that the is taken as a value of Prandtl number for 
centrifugal force term and the viscous terms in simplicity in replotting. It is significant to note 
the momentum equation must be of the same that with the new correlation all the theoretical 
order of magnitude, one obtains UC/w = curves for Pr 2 1 from the present analysis 
Re(a/2RJ. Using this relation, the new para- nearly coincide, and in particular the results 
meter K’Pr can be shown to appear as a co- for Pr = 1, 4, 25, 100 and 500 coincide exactly. 
efficient of the convective terms in the normalized This suggests the practical implication of “large” 
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Pr. Furthermore, all the experimental data for 
Pr = 379 and 0.7 (air) are seen to scatter within 
a narrow band around a new correlation curve 
with a higher Dean number portion obtained 
by a linear extrapolation of the present theoreti- 
cal results. The agreement between a new 
correlation curve and the available experimental 
data is considered to be remarkable in view of the 
fact that the new correlation is based on the 
assumption that the Dean number is small and 
the Prandtl number is large. Furthermore, one 
should note the inherent difficulties in the 
experimental measurements and the experi- 
mental simulation of the thermal boundary 
condition such as the uniform peripheral wall 
temperature at any cross section. The following 
approximate equation .is deduced using the new 
parameter K2Pr as the curve to best tit all the 
numerical results. 

Nu/(Nu),, = 0,181 Q(l - 0839Q-’ 

+ 35.4 Q-2 - 207 Q-3 + 419 Q-4) (20) 

where, Q = (K’Pr)* 2 3.5 for Pr 2 1 
For Q < 3.5, the secondary flow effect is 

estimated to be less than 1.5 per cent in terms of 
the Nusselt number ratio Nu/(Nu),. In view of 
the possible experimental errors in the region 
Q < 3.5, the secondary flow effect is not con- 
sidered to be important in that region. The 
correlation equation (20) can now be con- 
sidered to be valid for all the practically im- 
portant laminar regimes with sufficient accuracy. 
In the application of the correlation equation 
(20) to the flow regime where the Dean number K 
is greater than say 200, it is well to note that 
secondary flow stabilizes laminar flow with the 
transition Reynolds numbers of 600&8000 
being characteristic of helically coiled tubes [14] 
and also the present analysis is valid up to 
a/R, = O[lO-‘I. 

The inconsistent behavior of the boundary 
layer approximation [5] for the Prandtl number 
effect is evident from Fig. 11. For example, the 

heat transfer results for Pr = 1,4, and Pr = 379, 
500, are clearly on the opposite sides of the new 
correlation curve. This leads to the conclusion 
that the boundary layer approximation [5] is 
valid only near Pr = 1.0. 

A comment on the computing time required 
to obtain a complete numerical result for flow 
and heat transfer at each value of the parameter 
C2/r, may be of interest. It takes about 2 min 
for C’/r, = lo3 and 8 min for C2/r, = 4 x lo4 
with M, N = 28 and Pr = 1.0 on IBM 360167. 
On the other hand a computing time of approxi- 
mately 40 min is required to obtain a complete 
result up to C2/r, = 4 x lo4 with M, N = 28 
and Pr = 1.0. One notes that the computing 
time depends to a large extent on the selection 
of a relaxation factor. 

5. CONCLUDING REMARKS 

1. The numerical solution using a combina- 
tion of the line iterative method and boundary 
vorticity method is shown to be very effective up 
to a reasonably high value of the Dean number 
where an asymptotic behavior already appears 
for flow and heat transfer results, and further 
result for high Dean number range can be 
obtained by a linear extrapolation. The dis- 
tinctive features of the new method are its 
simplicity, computational stability, and a sig- 
nificant saving in computing time as compared 
with the conventional methods. 

2. The Prandtl number effect for fully de- 
veloped laminar forced convection in curved 
pipe is clarified for the first time. It is shown that 
all the heat transfer data for the present problem 
can be correlated by a single curve using a new 
parameter Q = (K’Pr)* for Pr 2 1. This ob- 
servation of the asymptotic behavior in heat 
transfer results for Prandtl number effect is 
noteworthy and significant. It is not required in 
future to carry out separate computation or 
experiment for various Prandtl numbers in 
order to study the Prandtl number effect for 
Pr 2 1. 

3. According to the order of magnitude 
analysis, the present formulation is considered 
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to be valid for a/R, d O[lO-‘1. However, it is of 
practical interest to note that the assumption 1 
in the formulation of the problem may be con- 
sidered to be valid up to a/R, = & in practice. 
This observation is based on the theoretical and 
experimental flow results available in the litera- 
ture [lo, 11, 141. Reference [14] appears after 
the submission of the present paper and is 
included here for completeness. 

4. The correlation equation (20) clearly indi- 
cates the existence of the asymptotic behavior for 
large Prandtl number or large Dean number, and 
only the first term on the right hand side of 
equation (20) is significant. This finding is 
similar to that observed in earlier work [13] and 
is considered to be of practical importance. 

5. Based on the present numerical results it is 
now evident that the perturbation method as 
used in the literature diverges quickly with the 
increase of the Dean number. This remark 
applies to a class of broadly similar forced 
laminar convection problems with secondary 
flow. Furthermore, it is shown that the boundary 
layer approximation predicts inconsistent 
Prandtl number effect and is valid only near 
Pr = 1.0. 

6. The question arises as to the physical 
signficance of the tube wall thermal boundary 
conditions employed in the numerical analysis. 
It is known that laminar flow heat transfer in 
ducts is strongly influenced by the wall boundary 
condition-uniform wall temperature around 
the duct, uniform wall temperature axially, 
uniform heat flux axially or around the duct. 
The particular boundary condition of constant 
heat input per unit axial length and constant 
peripheral wall temperature at a given axial 
position can be met in practice only with the 
wall of large thermal conductivity in the peri- 
pheral direction. Nevertheless, this is considered 
to be one of the basic thermal boundary con- 
ditions in the literature. The particular thermal 
boundary condition was selected to demon- 
strate the applicability of the boundary vorticity 
method to the present problem, and to compare 
the numerical results for heat transfer with the 

published theoretical and experimental data It 
is to be noted that the method employed can be 
readily adapted to various other thermal 
boundary conditions mentioned earlier. Further 
details regarding the thermal boundary con- 
ditions in convective heat transfer can be found 
in [15]. 
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METHODE DE VORTICITE LIMITE POUR UN TRANSFERT THERMIQUE PAR 
CONVECTION FORCEE LAMINAIRE DANS DES TUYAUX COURBES 

RbumLUne solution aux differences tinies utilisant une combinaison dune methode iterative lineaire 
et d’une mtthode de vorticite limite est present&e pour la convection laminaire for&e complttement 
developpee hydrodynamiquement et thermiquement dans des tuyaux courves soumis aux conditions 
thermiques limites de flux thermique parittal uniforme et de temperature par&ale uniforme sur la ptri- 
pherie pour une position axiale quelconque. La solution numerique converge jusqu’a un nombre de Dean 

raisonnablement grand oh le comportement asymptotique des resultats relatifs a I’tcoulement et au trans- 

fert thermique apparait deja. L’effet du nombre de Prandtl sur le r&hat du trasfert thermique est clarifie 
pour la premiere fois. et on-montre que tous les resultats du transfert thermique pour Pr > 1 peuvent etre 
relies par une simple courbe utilisant un nouveau parametre (K’ Pr) avec une precision raisonnable. On 
compare les resultats numeriques de la presente analyse avec les resultats experimentaux et thtoriques 
utilisables dans la litterature. On montre facilement que la methode de perturbation est inadequate et on 

releve une certaine deficience de la methode d’approximation de la couche limite. 

RANDWIRBELMETHODE FUR LAMINARE ZWANGSKONVEKTION. 
WARMEUBERTRAGUNG IN GEKRUMMTEN ROHREN 

Zusammenfassung-Unter Bentitzung einer Kombination aus der Methode der Linieniteration und der 
Randwirbel wird eine Liisung mit endlichen Differenzen gegeben fur hydrodynamisch und thermisch 
vollentwickelte laminare Zwangskonvektion in gekrtimmten Rohren, die abhangt von den Randbedin- 
gungen eines tiber die Rohrlange konstanten Wlrmestromes durch die Rohrwand und einer konstanten 
Wandtemperatur am Umfang eines behebigen Axialschnittes. Die numerische Losung konvergiert bis zu 
einer verntinftigen Dean-Zahl, wo bereits das asymptotische Verhalten ftir die Ergebnisse aus Strijmung 
und Warmetibertragung auftritt. Die Wirkung der Prandtl-Zahl auf den Warmeiibergang wird zum ersten 
Mal gekllrt. Es zeigt sich, dass alle Ergebnisse des Wtirmeiibergangs fiir Pr > 1.0 durch eine einzige Kurve 
aufeinander bezogen werden konnen. Der neue Parameter (K2 Pr) liefert dies mit guter Genauigkeit. 
Die Rechenergebnisse aus dieser Analyse werden mit den experimentellen und theoretischen Ergebnissen 
aus der Literatur verglichen. Die Verwirbelungsmethode erweist sich klar als unzureichend. Auch die 

Nlherungsmethode der Grenzschicht zeigt gewisse Nachteile. 

METOA FPAHHYHbIX B03MYIIJEHHH AJIFI PACVETA TEIIJIOOBMEHA 
R BCKPBRJIEHHbIX TPYBAX IIPII JIAMHHAPHOH BbIHYxJJEHHOH 

HOHBEKIHIM 

AHHOTBqaJi-npeACTasJreH0 pemf?HHe B KOHeYHbtX pa.BHOCTRX, nOByHeHHOe C nOMOmbBl 
COBMeCTHOrO npHMeHeHHR M3ToRa JHIHeBHbIX HTepaHHB II MeTOna rpaHHYHbtX BO3MymeHMB, 
nJtn BbtHyH(BeHH0i-i KOHBeKnHH, nOJtHOCTbH) pa3BHTOZf rMnpOnAHaMAHeCKA II TepMOaHHaMH- 
HeCKB, B HCKpHBneHHblX Tpy6ax npM TennOBbIX nOrpaHAnHbtX yCnOBMRX BnH OBHHaKOBOrO 
n0 OCH TenjIOBOrO nOTOKa CTeHKH II ORMHaKOBOB n0 nepB@epHH TeMnepaTypbt CTeHKH B 
JHO6OM MeCTe n0 OCH. %tCJteHHOe pemeHHe CXOABTCR BnH nOCTaTOHH0 BbtCOHMX HHCen AHHa, 
rr[e yxie npoHBnHeTcH acnMnToTHHecKHM xapaKTep pe3ynbTaToB finH TeHeHHn M rennoo6Mena. 
Bnepsbte BbIHCHReTCH BJHlHHHe HHCJIa DpaHnTJtH Ha naHHbte n0 TennoO6MeHy ; nOKa3aH0, 
HTO BCe pe3yJtbTaTbt n0 TennOO6MoHy AJtH HHCeJi Pt. > I,0 MOWiHO C nOCTaTOHHOZf TOUHOCTbtO 
06o6ma’rb OnHOti KpHBOti, MCnOJtb3yH HOBbti napaMeTp (K2Pr). %CJteHHbte pe3ynbTaTbi 
naHHOr0 aHaJtH3a CpaBHMBatOTCH C 3KCnepAMeHTaJIbHbIMB H TeOpeTHBeCKMMU APHHbtMR, 
MMetOmHMHCH B JHiTepaType. Y6enMTenbHO nOKa3aH0, HTO MeTOg BO3MymeHMi RBJtHeTCR 
HeCOCTOHTeJtbHbtM A yKa3btBamTCH OnpeBenEHHbte HeBOCTaTKH MeTOBa annpOKCHManHM 


